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NON-LINEAR ORBIT DETERMINATION METHODS

By Ali Hasan Nayfeh
Heliodyne Corporation, Van Nuys, California

SUMMARY

A non-linear correction method for orbit determination
using range, azimuth, and elevation data is presented and justified
mathematically and numerically. In contrast with conventional
methods, such as the least-squares, the maximum likelihood, and
the Kalman, this method holds in the non-linear, as well as in the
linear regions. Moreover, this method does not require transition
and normal matrices and, hence, avoids the problems associated
with calculating and inverting them. The convergence and accu-
racy of the method have been demonstrated by calculations made
on simulated orbits with varying levels of noise. The calculations
demonstrate that the proposed method is non-linear and can be
used as an editing procedure because it converges despite the com=-
bined effect of very bad reference orbits, extremely high levels of
noise, wild data points, and critical orbits. The calculations show
also that the errors of the resultant epoch state vectors are indeed
very small,

The method has been extended for the determination of aero-~
dynamic parameters such as B. Numerical calculations using
range, azimuth, and elevation data show that the method converges
and the errors are small irrespective of the bad initial conditions
for the trajectory and for the 8.

The method has been extended also to cis-lunar orbits where
range and range rate are the only reliable measurements. In this
case, the problem reduces to the problem of determining an orbit
using range and range rate at three different times which can be
taken to be close to each other. The method of quasilinearization
is applied to this problem. In carrying out this method, a solution
for a set of six quadratic algebraic equations needs to be obtained.
The numerical solution of these sets of algebraic equations can be
obtained using Kane's refinement of the Newton-Raphson procedure.



An alternative method based on quasilinearization has been
presented for orbit determination in general and cis-lunar orbits
in particular. Moreover, non-linear least-squares and maxi-
mum likelihood methods have been presented. However, work
needs to be done to program these alternative methods and com-
pare their numerical results.

INTRODUCTION

Data pertaining to either the position or the velocity or both
of a space vehicle can be obtained by its tracking. Irrespective
of the kind of sensor being used, the data is, however, corrupted
by noise. Thus, redundant data must be used for the determina-
tion of the best estimate of the orbital parameters and any other
unknown parameters in the equations of motion.

To determine the best estimate of these parameters from
the noisy data, many filtering and estimation methods based on
the differential correction method have been devised. The most
commonly used methods are the least-squares (refs. 1 and 2),
the maximum likelihood (refs. 1 and 2), and the Kalman filter
(refs. 2 and 3)., These methods start by assuming nominal values
for these orbital parameters and, hence, a nominal orbit. The
orbital parameters are perturbed and the orbit is expanded in a
Taylor series expansion about this nominal orbit. The deviations
in the orbit as a function of time are related to the perturbations
in the orbital parameters through what is called a transition ma-
trix. This transition matrix is multiplied by another matrix,
depending on the observables, to relate the deviations in the ob-
servables to the orbital parameter perturbations. The residuals
(observed minus computed values) are optimized in some fashion.
In the least-squares method, the best estimate minimizes the
sum of the squares of the residuals. The maximum likelihood
assumes that the errors are normally distributed and, hence, the
best estimate maximizes the likelihood function. On the other
hand, the Kalman filter differs from the maximum likelihood by
assuming that the best estimate is a linear function of the previ-
ous estimate, as well as the measured data. With these criteria,
linear simultaneous equations are obtained to solve for the orbital
parameter perturbations. These equations have to be solved for
the perturbations, generally by inverting the so-called normal
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matrices. Then the orbital parameters are corrected and a new
reference orbit is obtained and the process is iteratively repeated
until the iteration hopefully converges.

The iteration procedure may diverge and lead to irrelevant
answers in cases where the linearity assumption is violated (refs.
4 - 6). These cases arise if the initial conditions are such that
the reference orbit is not nominal, or the data is corrupted by
either high levels of noise or wild points, or the normal matrix
is near singular.

There are some disadvantages associated with the use of
transition and normal matrices. Time and effort are needed for
calculating the partial derivatives constituting the transition ma-
trices, For example, if we want to determine the initial condi-
tions (position and velocity vectors), we need to calculate a 6 X 6
matrix, Thus, we need to solve 36 first-order differential equa-
tions. In general, these equations have to be solved numerically.
Hence, the use of transition matrices requires the solution of 42
first-order equations instead of 6 equations only. Moreover, the
inversion of the normal matrices may blow up if some of the or-
bital parameters happen to be near parallel and, hence, the nor-
mal matrix near singular. Although the orbital parameters may
be theoretically independent (given an infinite number of signif-
icant figures), they may become dependent and, hence, the nor-
mal matrix becomes singular because of the number of significant
figures that can be obtained using a computer. Also, the inver-
sion of matrices suffer from high cumulative round-off errors due
to the large number of arithmetical operations needed.

To determine the best estimate of the orbit that passes
through noisy data, a non-linear correction method was developed
by Hunt and Nayfeh (ref. 7)., This filtering method avoids the
problems associated with conventional methods, such as the
Bayes estimation and the Kalman filter, because it is a non-linear
method and it does not use transition and normal matrices.

The method is based upon the idea that if the exact orbit
could be determined, the residuals (defined as measured minus
computed values) would represent the noise. If this noise is ran-
dom, then the coefficients of any polynomial that fits through the
residuals in the least-squares sense must vanish., Hence, the
time axis passes through the residuals in the least-squares sense.



Thus, after determining an orbit, one usually checks how well the -
orbit has been determined by plotting the residuals and seeing how
well they are distributed about the time axis. Rather than using
the fact that the time axis must pass through the residuals in
least-squares sense as a check on how well we determine the
orbit, we use this fact in order to determine the orbit. Thus, we
fit the residuals into a polynomial in least-squares sense and use
it to correct the initial conditions of the assumed orbit so that the
coefficients of the next polynomial least-squares fit to the new
residuals are decreased.

In this paper we will describe the non-linear filter and then
we will extend it to determine the orbit as well as any perturba-
tive parameters. We will extend the method for the determination
of cis-lunar orbits. We present an alternative method based on
guasilinearization. Finally, we propose non-linear least-squares
and maximum likelihood methods for orbit determination.

A NON-LINEAR ORBIT DETERMINATION METHOD

In this section, we will first describe the non-linear orbit
determination method, and then justify it mathematically as well
as numerically.

Description of Method

The following description of the method assumes that the
data is given in Cartesian coordinates. If the data is given in
range, azimuth, and elevation, one can either transform these
into Cartesian coordinates or write the equations of motion in
spherical coordinates. In the latter case, the range, azimuth,
and elevation take the place of the x, y, and z coordinates. The
method consists of the following steps:

Determination of a reference orbit. - The method is an
iterative or recursive procedure, and, thus, we need to assume
an orbit (called reference orbit) to start the calculation. To cal-
culate the reference orbit, we assume values for the initial con-
ditions (initial position and initial velocity vectors) and then
integrate the equations of motion. Since the method is non-linear,
the procedure converges to the right orbit, irrespective of how
bad the initial conditions used in calculating the reference orbit




were, as demonstrated numerically on pages 11 through 13. Thus,
any values can be used for the initial conditions to calculate the
reference orbit.

However, we can always do better than a mere guess of the
initial conditions for the reference orbit, and, thus, avoid the un-
necessary delaying of the convergence. For example, we start by
determining a two-body orbit with an inverse square central field.
This two-body orbit can be obtained using a Gaussian, Lambertian,
or Gibbsian method employing, for example, two-positional data
points and their separation times. Using this orbit, we can deter-
mine an epoch state vector (initial position and velocity vectors).
Using this epoch state vector, we integrate the full orbital equa-
tions of motion and we take the resulting orbit as the reference
orbit.

L.east-squares fit of the residuals. - The residual differ-
ences between the measured discrete data points and the values

obtained from the computed reference orbit at the corresponding
times are formed. These residuals Ar; at time t: are fitted in
the least-squares sense to a linear or a parabolic time-dependent

vector. For demonstration, we choose a linear vector Aa , +
Ahot. Thus,

Sl - (ong van)[ 7 [on - (8, a2y

is minimum. Minimizing with respect to A_a_o and Aho yields

Zj: Az, -(Aio +A_*t_>otj>]=0, (1)
and
th [Azj - (Aio +A§Otj>] - 0. (2)



Solving these equations for Ago and Al_)o yields

L N
/—\EO Z A_r_j
J
= C'l
(3)
Ab t. Ar
o i J J

-1 .
where C ~ is the inverse of the matrix C which is given by

B T
n t.
; J
C = (4)
Yy
; i
Epoch state vector updating. - Once Aa, and Ab  have been

found, a new epoch state vector is formed. Thus,

a, =a +Aa , (5)
=0

and

on
1

b +Ab . (6)
-1 —0 —o0

Only the initial conditions were modified because a poly-
nomial time-dependent vector is not a solution of the full orbital
equations of motion. Moreover, even if it is a solution of these
equations, we cannot obtain a solution by adding this polynomial
to the reference orbit because the orbital equations of motion are
non-linear and the principle of superposition does not hold.




Iteration. - Using the new epoch state vector obtained on
page 6, we compute a new reference orbit by integrating the full
orbital equations of motion. Then, we form the residuals Ar:
and fit them in the least-squares sense to a linear time-dependent
vector (Aa 1 + Abyt). Once Aa; and Abq are found, we determine
a new epoch state vector (initial conditions a, and b,) according to

+ A
2y 294

|
™~
U

(7)

o
1

b, +4b

2 1 1

We repeat the above procedure by calculating a new orbit, com-
puting the residuals, fitting them to a straight line time-dependent
vector, and then updating the epoch state vector. The iteration is
ended when ‘IAii I and lA_’t_)_i | are less than preassigned small
positive convergence numbers.

A similar procedure is followed when all the data is not
available simultaneously or if the time interval is long. For long
time intervals and for real time operation, the recursive formu-
lation as described below is used. If there are A, discrete posi-
tion data points available at the times ty, t;, ..., t , the values
of the reference orbit are computed at these {(n) points only. The
residuals at these (n) points are used to estimate a correction to
the initially assumed position and velocity vectors and, hence, a
new reference orbit. As more data points become available, the
predicted values of the new reference orbit are computed at the
times corresponding to these new data points, as well as at the
old ones. The residuals at all of these times are used to estimate
a correction to this new reference orbit. This procedure is
shown schematically in Figure 1 where the position data becomes
available at the rate of one more point for each reference orbit.
When the first reference orbit was computed, the data points Ay
and A, were available, while when the second and third reference
orbits were computed, data points Al’ AZ’ A3, and Al’ AZ’ A3,
A4, respectively, were available.



Mathematical Proof of Convergence of Method

To prove the convergence of the method, deterministic,
rather than statistical problems, are used. The difference be-
tween the two cases is that in the deterministic case, the proce-
dure converges to the true orbit, whereas in the statistical case
the procedure converges to an orbit that minimizes the sum of
the squares of the residuals. However, the orbit obtained in the
statistical case is the true orbit if the noise is Gaussian., If the
noise does not have zero mean, the orbit converges to a biased
orbit. Therefore, the bias must be removed, either before or
after processing the data.

The convergence of the method can be proved in the follow-
ing way. For simplicity, consider the first-order equation

x = f(x, t), (8)

where f(x, t) is continuous in [0, :cV] and satisfies the Lipschitz
condition {(ref. 9) with M 2 0,

[, t) - £y, ) | sM | x - y]. (9)

Let x; and x; be the solutions of Eq. (8) corresponding to the
initial conditions at and aj, respectively, and let

and
a. . =a.+AMa.. (1
i+1 i i
Then, there exists at t_ > 0 such at lim a, = a, and hence, x, = x .
f i=oo 1 t i

1)

t



It is known from the theory of ordinary differential equations
(refs. 8 and 9) that for every initial condition a;, there exists a
unique continuously differentiable solution X3 in [0, ’F] The solu-
tions corresponding to the two initial conditions a; and a; satisfy

1 J
the inequality (ref. 9)

e . (12)

From Eq. (8)

Xi = ai +/C: f(xi, t) dt (13)

and

Subtracting Eq. (14) from (13) and dividing by (a; - a;) £ 0 (if a; -
a, = 0, then X, =X and, hence, Aaiz 0) leads to

Combining Eqs. (9) and (15) leads to

dt. (16)

0. -1
i

X - X,
t 1

t
f

<
|at - ai' o
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Combining (12) and (16) gives

< <eMt - 1). (17)

Therefore, the sequence of functions ¢, (t) is equicontinuous, i.e.,
i

for every > 0, there exists a 6 given by (eM6 - 1) = (n/7) such

that <pi(t) -1<(n/7)if 0 £t <5 for all i.

From (10) and the equicontinuity property, we find that

Aa,
<
P 1+, (18)
t 1
and
Aa
< -
— 1-mn. (19)
t 1
Hence,
a, - a.
t i+l <, (20)
a -a
t 1
and
a -a < i a -a (21)
t i n t o)

Therefore, for n <1, i.e., fort <(1/M) In (8/7), lim |a - a.l =0,
f i—00 t 1

and, hence, a. »a and x, - x .
1 t 1 t




Computational Demonstration of Convergence and Accuracy

In carrying out the caluclations described herein, extreme
situations were simulated to test the performance of the method.
The simulated data are designed to test the non-linearity of the
method, its accuracy, its operation in the presence of high levels
of noise, and the capability of the method to be used as an editing
procedure. In performing the calculations, a right-handed earth-
centered inertial Cartesian coordinate system was chosen. The
earth' s gravitational field second and fourth harmonics were in-
cluded. A fourth-order predictor was used which was mechanized
as a general purpose multi-equation subprogram. Double preci-
sion was employed in the numerical integration routine. All other

computations are in single precision,

In simulating the data, the equations of motion were inte-
grated for two near circular orbits and one hundred sets of X, Y, 1
Z, positions at one hundred sequential discrete times were |
chosen. Near-circular orbits were used because they are more
critical due to the importance of non-linearity at some points in
these orbits. Gaussian noise with varying standard deviations was
generated. Then, positional data is obtained by adding the noise
at the corresponding times to the X, Y, Z positions obtained above.

A deterministic case. - To demonstrate that the method is
non-linear, the following test was conducted using deterministic
data.

Positional data sets (elements in three coordinates), one
second apart, were computed from a near-circular orbit (referred
to as ''true' orbit) with a period of approximately 90 minutes and
an inclination of about 45°. The epoch state vector (initial posi-
tion and velocity vectors) for this true orbit is given in the first
row of Table 1,

An initial reference orbit was computed using an assumed
initial velocity of zero and initial coordinates differing by
1,000, 000 feet from the true values. It is worth noting that these
initial guesses are much worse than might be expected in a prac-
tical situation. This was done to demonstrate the ability of the
new method to handle very poor initial guesses of the reference
orbit. The recursive formulation of the proposed method, as
described above, was used to process this data at the rate of one

11
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more point for each new reference orbit. The updated epoch state
vectors obtained from processing 2, 20, and 27 points are shown
in Table 1.

Table 1 shows the rapid convergence of the initial conditions
of the reference orbits to those of the true orbit., From the third
row, it can be seen that, after processing only the first two points,
the initial position coordinates converged exactly to those of the
true orbit. As seen from the last row of Table 1, the initial ve-
locity converged exactly to that of the true orbit after processing
27 points. Therefore, the method converges to the true orbit,
irrespective of how bad the initial reference orbit is and, hence,
the method is non-linear.

Statistical cases. - To show that the combined effect of very
bad initial guesses and the presence of high levels of noise does
not affect the convergence of the proposed method, the following
tests werc conducted.

Two different near-circular orbits, at an inclination of 45°
and with periods of approximately 90 minutes and 24 hours (re-
ferred to here as ''true' orbits), were used. The epoch state
vectors for these orbits are given by the first rows of Tables 2
and 3, respectively. One hundred sequential positional data points,
10 seconds apart, were obtained by adding different levels of
Gaussian noise to these true orbits. For the 90-minute orbit, we
computed three cases having noisc with a standard deviation of
102, 104, and 10° feet, respectively (Table 2). For the second
case of the 24 hour orbit, the noise was even higher: 104, 106,
and 107 feet, The same ridiculous guess of the initial conditions
used in the previous case is used in all of these cases.

The recursive formulation of the new method was used in
processing this data at the rate of one more point for each new
reference orbit. The resultant epoch state vectors and the errors
are shown in Tables 2 and 3. The residuals vs time are presented
in Figures 2 and 3,

Tables 2 and 3 show that the epoch state vector converged to
those of the true orbits with excellent accuracy. From rows 3, 5,
and 7, it can be seen that the errors made in estimating the true
epoch state vector were indeed very small. Figures 2 and 3 re-
flect the fact that the residuals are random. Therefore, the




proposed method filtered the noise from the orbit very well, irre-
spective of how high the noise level was and irrespective of the
bad guess of the initial conditions.

Editing capability. - To show that the new method can be
used as an editing procedure, the following test was conducted.

Positional data sets were obtained by adding random noise
with 107 feet standard deviation and 25 wild data points (differing
from the truc orbit by 10° feet) to a near-circular orbit with a
period of 24 and an inclination of 45°, The same initial condi-
tions used previously were employed. The residuals vs time are
plotted in Figure 4,

Despite the combined effect of a high level of noise, the
presence of wild points and the bad guess of the initial conditions,
the proposed method converged, while the conventional estima-
tion method might ""blow up' since they depend on the linearity
assumption. As expected, the mean of these residuals is not
zero; data points lying outside predetermined dispersion limits
(outliners) can easily be eliminated. Then, a new estimate is
made and the process is repeated. This shows that the proposed
method can be used as an editing procedure and that the method is
certainly non-linear.

DETERMINATION OF PERTURBATIVE FORCE PARAMETERS

The procedure described in the preceding section can be
easily adapted to determine unknown parameters in the equations
of motion in addition to the orbital elements. In principle, the
problem of determining a constant parameter (A) in the equations
of motion is equivalent to adding a new equation (dA/dt) = 0 to
these equations and determining the initial conditions for the new
set of equations., In the rest of this section, we will describe the
extension of the procedure described earlier in order to deter-
mine the aerodynamic parameters and we will give the results of
a simulated numerical case.

For simplicity, we consider the determination of constant
drag, lift, and side-force parameters in addition to the orbital
parameters. The equations of motion of a point mass under the

13
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influence of lift, drag, and side-forces, as well as gravitational
forces in a earth-centered-inertial coordinate system are

2

o,
Hl

e+

_ 1oo2r_le 1o 1o
= gradU+2nga[ 5D Tyl CeS] (22)

2
t

[oF

where T is the position vector, U is the gravitational potential, p

is the air density, and g is the gravitational constant, 3 = (W/CDA),
7 = (W/CLA), and C = (W/CSA). The aerodynamic coefficients are
Cp, Cy,» and Cg for drag, lift, and side-force, respectively. W
is the weight and A is a characteristic area of the vehicle. Since
the atmosphere is assumed to rotate with the Earth, the relative
velocity vector of the vehicle with respect to the atmosphere Va is
given by

|5
l
1)

- Wxr (23)

o<t
0
o

where w is the angular rotation vector of the Earth. If wind vari-
ations are included, then the relative velocity V_is given by
a

— d; —
= — _ - 24
Va 11 wxr Vw (24)

where Vw is the wind velocity., The unit vectors eps €1, and eg
are defined by

g i Va . —er<rxeD> . _rxeD (25)
D lVaI ? eL - r ! S r

To determine the aerodynamic parameters B, 7, and { as well as
the initial conditions of the trajectory from measurements that
provide complete position fixes, we propose the following method.




a. We fit the first, say, ten data points to a straight line
time- dependent vector ao + 5' t in least-squares sense.
We choose ao and b to be the initial position and ve-
locity of the traJectory and guess values for 8, 7, and
C. Using these values for the aerodynamic parameters
and the initial position and velocity, we calculate a
reference trajectory by integrating Eqs. (22) - (25),
and calculate the initial acceleration E'O.

b. We form the residual differences between the measured
discrete data points and the values obtained from the
computed reference trajectory at the corresponding
times. We fit these residuals in a least- squares sense
to a parabohc time-dependent vector Aao + Ab t+
2 AC t

c. We update the initial position, velocity, and accelera-
tion. Thus,

- — 1 -

a; =a_ +3 Aao (26)

5. =5 +=AB (27)
1 o 2 o

-— — 1 -

c, =c +=Ac (28)

Only half of the corrections were applied in order to
accelerate the convergence

d. The new initial position, velocity, and acceleration ob-
tained in (c.) are substituted in Eqgs. (22) - (25). New
values for j3, s and { and the new initial position al,
and velocity bl’ we calculate a new reference orbit and
continue steps (b.) through (e.) until the change in
initial position, velocity, and acceleration is smaller
than some assigned convergence numbers.

The procedure described above has been programmed for
the determination of the drag parameter P (ballistic coefficient).
We present here the results of a test case which has been conducted
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using this program. A trajectory of a vehicle (referred to here as

true trajectory) with g = 25 lb/ftz, CL = CS = 0 was simulated. One

hundred and fifty positional data sets, one-tenth of a second apart,
were computed by integrating the equations of motion using the ini-
tial conditions for position and velocity as shown in the first row
of Table 1. Random noise of standard deviation of 250 feet was
generated. Then, positional data is obtained by adding the gener-
ated noise at the corresponding times to the X, Y, Z positions ob-
tained above.

The above mentioned method was used in processing the data.

A very bad initial guess of 2000 1b/ft® for p was used, and the ini-
tial guesses for position and velocity are shown in the second row
of Table 1. It is worth noting that the initial guess for velocity is
very bad. Figure 5 shows the rapid convergence of . Thus, in
spite of the very bad guess for the velocity and the ballistic co-
efficient and in spite of the presence of noise, the procedure con-
verged to the simulated ballistic coefficient.

CIS - LUNAR ORBITS

Since cis-lunar satellites aretracked by sensors on or near
the Earth, range and range rate are the only reliable measure-
ments. Thus, complete reliable positional coordinates are not
available for cis-lunar orbits. Therefore, the objective of this
section is to (a) extend the non-linear method to determine the
best estimate of the orbit of a satellite using range data only, or
range and range rate data only, (b) present a quasilinear method
to determine cis-lunar orbits, (c) present non-linear least-
squares and maximum likelihood methods for orbit determination.

Extension of Method to Cis-Lunar Orbits

To start the computations, a reference orbit is needed. If
an initial orbit is not known, an initial orbit can be determined
using the non-linear method as explained previously utilizing the
angle measurements as well as the range data. We choose three
different times Tl' TZ’ T3 to be the initial time and two later
times near T1. We determine the range R (T;), range rate
Ro(Ti)’ and Ro(Ti) for i = 1, 2, and 3.




Case of range data only. - The extension of this method to

this case consists of the following steps:

(a)

(b)

(c)

Least-squares fit of the residuals: We form the re-
siduals between the measured discrete range data
points and the computed values from the reference
orbit at the corresponding times. These residuals
AR j at times tj are fitted in the least-squares sense
to the parabolic function of time Aaj + Ab t + Acot2 .

Updating of R, R, and R at Ti' s: The values of R, R,
and R at T, 1= 1, 2, and 3 are updated according to

R (T.) =R (T.) +Aa +Ab T. + Ac T° (29)
11 o 1 fo} o 1 o i
RAT.) =R (T.) +Ab +2 Ac T, (30)
1" 71 o i o) o i
R.(T.) =R (T.) + 2 Ac (31)
1" i o i o

i=1, 2, and 3.

Iteration: Using the new range and range rate at the
different times Ty, T,, T3, or using R, R, and R at
Ty and T, we calculate a new reference orbit. Then
we form the residuals for the range and fit them in
least~squares sense to a polynomial. We update R,
R, and R at the three different times as in (b) above.
Then a new reference orbit is computed and the pro-
cedure is repeated until the iterations converge.

Case of range and range rate data only. - The extention of

the method to this case consists of the following steps:

(a)

Least-squares fit of the residuals: We form the re-
siduals between both the measured discrete range and
range rate data points and the computed values from
the reference orbit at the corresponding times. The

range residuals ARj at times tj are fitted in the
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least-squares sense to Aay + Ab,t + Ac, t* while the
range rate residuals AR are f1tted to Aa + Ab t +
Ac t°

(b) Updating of R, R, and R at Ti' s: The values of R, R,
and R at the times Tj, i =1, 2, and 3 are updated ac-
cording to

2
R(T.)=R (T.) +Aa +Ab T. + Ac T, (32)
171 o i o) o i o' i
. . . . . 2
RA(T.) =R (T.)+Aa +Ab T, +Ac T, (33)
1" 1 o 1 o o i o 1
R(T.) =R (T.)+Ab +2Ac T, (34)
1" i o i o o i
=1, 2, and 3
(c) Iteration: Using the updated range and range rates at

T1, TZ’ and T3, we calculate a new reference orbit.
Then we form the range and range rate residuals. We
fit each in the least-squares sense to a parabola. Then,
we update R, R, and R at Ty, Ty, and T3 as in (b)
above. We continue the process from (a) through (c)
until iterations converge.

Determination of an orbit using R and R at three different
times or R, R, and R at two different times. - The extension of

the non-linear orbit determination method to cis-lunar orbits is
reduced to the problem of determining the orbit of a satellite us-
ing R and R at three distinct times or R, R, and R at two times.
The times are close to each other and this fact can be used to
advantage as will be later explained. Thus, the filtering problem
in the cis-lunar case is reduced to a multipoint boundary-value
problem; whereas the filtering problems in the cases of Earth
orbits and ballistic trajectories were reduced to initial-value
problems. The solution of initial value problems is straight-
forward and we compute an orbit using the updated state vector.
In the case of multipoint boundary-value problems, the solution
is not straightforward. The two dimensional problem of deter-
mining an orbit using range and range rates has been treated in




reference 10, and the three-dimensional case has been treated in
reference 11 using the method of quasilinearization (ref. 12). We
will present here the solution presented in reference 11, and we
will extend the analysis of reference 11 to apply the method of
quasilinearization to the problem of determining an orbit using R,
R, and R at two distinct times.

Let the coordinates of the origin with respect to the sensor
be given by the known vector p(pq, P,: p3), and let the coordin-
ates of the satellite with respect to the origin be given by the
vector £(r1, ry, T3 ). Then, the coordinates of the satellite with
respect to the sensor are given by the vector

_]R_:Rgzz-}-‘e (35)

where R is the magnitude of r + p and e is a unit vector in the
direction of r + p. Dotting Eq. (35) by itself leads to

(x+9) - (x+p =R (36)
Differentiating Eq. (35) with respect to time yields

r+p=Re+Re (37)

Since e.e = 1, then e. e = 0. Hence, dotting Eq. (35) with Eq. (37)
leads to

(r+p) ~(r+p) =RR. (38)
Differentiation of Eq. (37) yields

f+p=Re+2Re+RE (39)
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Dotting (35) and (39) leads to
(x +p) - (£+g)='R'R+R23.§ (40)
Since é.e = 0, we get
e.e = - e.e (41)

Dotting Eq. (37) by itself leads to

(r+p)+(x+p) - R® +R2_§.é; (42)
Combining Eqs. (40) - (42) yields
(£+5) - (t+p) +(£+p) + (£+p) = RR + R (43)

Equations (36), (38), and (43) evaldated at Ty, T,, and T3 con-
stitute nine conditions for the determination of the orbit. Any six
of these conditions are enough for the determination of the orbit.

The equations representing the motion of the satellite are
given by

i = f_(r, t) (44)
Or in component form,

X = 1 = 45
xi fi (Xl’ Xos Xa t), i=1, 2, and 3 (45)

The method of quasilinearization is an iterative procedure, let

k+
x. 1 be the (k+1)& iteration, then




(46)

k+1 k /7 k+l k>
AL
1 1

xi =xi+\

Substituting(46) in the right-hand side of (45), expanding the functions

k+1 k
fi' s in powers of (Xi - X, ), and retaining only the linear terms
leads to
k+1 f/k k kt>+z3:/k+1 kafi<k k kt)(47)
= X_ 3 X, , - - 3 ) ’
% i \F10 %pr X3 J_l\XJ % 2%, 10 %2 3
or
k+1 2 k  k+1 k
7 =) Bl x A (48)
i ij 7 i
j=1
where
k afi k k
By = 5x_.(xl’ %2 Xy t) and
J
k k k k > k k
= - 4
Ay =i <X1’ ¥ *3 t) 2:1 Bi; %5 (49)

The above equations constitute simultaneous linear inhomogeneous
equations for the K1 with coefficients that depend on the kih iter-
ation. If p is the particular solution and zy, z5, ..., zgare six
linear independent solutions of the homogeneous equations repre-
sented by (48), then the general solution of (48) can be given by

6
§=Zc,5_+p_ (50)

where the c.'s are arbitrary constants.
i
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The iterative procedure consists of the following steps:

(a) z; and p are computed by numerical integration of (48)
starting with a suitable initial orbit (such as the orbit
obtained using the angles also). The time needed for
numerical integration can be short and it needs to be

carried only from T; to T, or Tj.

(b) The values of z; and p at the times T, are noted, and
using these values, the expressions (50) are substi-
tuted in any six of the equations represented by (36),

(38), and (43) to give equations for the ci' s.

(c) These six simultaneous quadratic algebraic equations
are solved for the c¢.'s and a new orbit is obtained.
i

(d) Using the values of x and %, say at time Ty, the full
equations (44) are integrated, and a check is made to
see whether this orbit satisfies all of the nine condi-
tions (36), (38), (43), to the required degree of ac-
curacy. If not, starting with the new orbit, Eq. (48)
is integrated numerically and the steps from (a) to
(d) are continued until the conditions (36}, (38), and
(43) are satisfied to the required degree of accuracy.

Solutions of simultaneous quadratic equations. - In carry-
ing out the quasilinearization procedure, a solution of six simul-
taneous quadratic equations is needed. These equations can be
solved numerically starting with an initial guess for the values of

c;' s and linearize the equations to carry the solution in accord-

ance with the Newton-Raphson procedure, which is a special case
of quasilinearization. However, the iterations required to obtain
the solutions of these sets of equations may diverge or converge
to a different solution. The resultant orbit can be checked using
the three redundant conditions in (36), (38), and (43), and the
initial orbit obtained using the angles also. Moreover, the sum
of the squares of the residuals using this orbit must be less than
or equal to the sum of the squares of the residuals obtained using
the previous orbit. If the iterations converged to a different
orbit, a new guess will be used, and the procedure is repeated.
To solve the problem of divergence, we will use the refinement
proposed by Kane (ref. 13) to the Newton-Raphson procedure.




To obtain a value of the vector x that satisfies the algebraic
vector equations

F(x)=0 (51)

Kane regards x as a function x (T) of a scaler variable T which
takes on the values between zero and unity. He assumes that

x(0) =k (52)

where k is the initial guess of the solution, and he requires that
x (T) satisfies

F(x)=EX1-71) (53)

Differentiating Eq. (53) with respect to T leads to

o (W] Ew (54)

where [_F_" (5)]'1 is the inverse of F'(x). Kane integrates Eq. (54)
from T = 0 to T = 1. Then, x(1) is the required answer. This
procedure converges irrespective of the initial conditions.
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Cis-Lunar Orbit Determination Using Quasilinearization

As an alternative method to cis-lunar orbit determination,
we extend the analysis of reference 11 to apply to statistical range
and range rate data. Thus, we want to determine the orbital ele-
ments that minimize

i=1

2

/ \
N (£ +8,)- (2, +2,)
2 .
Zwi[|£i+£il—Ri] A : 1R_ — - Ry (55)

1

where the subscript i refers to quantities evaluated at time tj, and
wi and W; are weighting functions.

The method is an iterative procedure and it consists of the
following steps:

(a)
(b)

(c)

(d)
(e)

(£)

(g)

An initial orbit is assumed.

z . and p are computed from (48) using the above

initial orbit.

The values of z; and p are determined at the discrete
times t;' s and tf}e expressions (50) are substituted
into (55).

_I

Expression (55) is minimized with respect to the ¢;

Se.

The resultant non-linear algebraic equations for the
c;' s are solved using Kane's refinement of the

Newton-Raphson procedure.

Using x and x at the initial time t;, a new orbit is
calculated,

Using the orbit obtained in (f) as initial orbit, the
process from (b) to (f) is repeated until iterations
converge,




A Non-Linear Maximum Likelihood Method

In this section, we present another alternative method to
orbit determination in general and cis-lunar orbits in particular.
The method is a non-linear maximum likelihood method (the
least-squares is a special case) in contrast with the conventional
methods that are based on the differential correction.

Suppose that the measurements are represented by the n-
dimensional vector a = s + n, where s is an n-dimensional signal
vector to be measured and n is an n-dimensional noise vector.
The problem is to determine the orbital elements C1s €35 +eey CN
using these measurements. The measurement residuals e are
given by

e=a—s<c1, CZ’ oo CN)

If the covariance of the measurement error is given by the matrix
R, then the loss function L is given by

L=e'RYe=(a-5T R (-5 (56)

T 1 is the

inverse of R. If the measurement errors are uncorrelated, then

where e denotes the transpose of the matrix e, and R~

R is a diagonal matrix and L is given by

ez ez ez
L=R1+R2+...,+Rn (57)
11 22 nn

which is a weighted sum of the squares of the residuals. The
weights are inversely proportioned to the expected mean square
value of the measurement error. Thus, if the mean square value
of the error in a given measurement is large, then the effects of
the associated measurement residual on the sum is reduced.

The maximum likelihood estimate of the orbital elements is
the one that maximizes exp (-1L), and hence, minimizes the loss

25



function L. If we consider the orbital elements to be denoted by
the n-dimensional vector ¢, then the maximum likelihood esti-
mate is given by solution of

R a- CR s =0 (58)

These are N simultaneous algebraic equations for C{s €3, +v+s CN
which are non-linear in general. To solve this system, we fol-
low Kane by assuming that ¢ = ¢(T), and we let

R "s - R "a (59)
c=k

where k is the initial estimate for the orbital elements. Then,
differentiation of (59) with respect to T leads to

-1
T T
9s -19s ds -1
dc R dc dc R (s -a) (60)

c=k

—= - R—l(s—a)+

The system of equations, represented by (60) is solved from

T=0toT=1. Then, the desired orbital elements are given by
c(1).
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CONCLUSIONS

A method for orbit determination is presented. The con-
vergence of the method, in case the data furnishes the complete
coordinates of the object (i. e., all Cartesian or spherical coor-~
dinates) does not depend on a good initial guess to the reference
orbit, In the calculations made, even though very bad initial
reference orbits, extremely high levels of noise, wild data points,
and critical orbits (near circular) are used, the iteration con-
verged. Thus, the method is a non-linear technique. This is in
contrast with the conventional estimation procedures, such as the
least-squares, the maximum likelihood, and the Kalman filter,
which depend on the linear assumption. In contrast with the con-
ventional estimation procedures, the new method does not require
transition and normal matrices and, hence, avoids the problems
associated with calculating and inverting them. The calculation
of the partial derivatives constituting the transition matrices,
either numerically or analytically, and the inversion of the nor-
mal matrices, require an expenditure of computer time. The
new method gives excellent accuracies, as can be seen from
Tables 2 and 3, under the extreme conditions of the very high
levels of noise and initial conditions which are far from being
nominal,

The method has been extended to the determination of the
best estimate of the orbit as well as any unknown parameters in
the equations of motion. An extension of this method for the
determination of aerodynamic parameters is presented. A nu-
merical case for the determination of the ballistic coefficient
showed that the method converges to the correct value irrespec-
tive of the bad initial guess of the velocity and the ballistic
coefficient.

The method has been extended to apply for cis-lunar orbits.
The reliable observations in this case consist of range data only,
or range and range rate data only. The cis~lunar orbit deter-
mination problem has been reduced to the determination of an
orbit using range and range rate at three different times that can
be taken to be close to each other. The method of quasilineariza-
tion can be used to determine the orbit. As a result the problem

27



28

reduces further to the solution of sets of quadratic algebraic equa-
tions. A refinement of the Newton-Raphson procedure, proposed
by Kane, can be used to solve these equations.

An alternative method based on quasilinearization is pre-
sented for the determination of cis-lunar orbits. Also, non-linear
least-squares and non-linear maximum likelihood methods have
been presented. Work still needs to be done to program these
methods to obtain numerical answers and compare the results of
these three methods.
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Fig. 1 A sketch that shows the recursive formulation
of the method
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Fig. 3 Orbital Residuals vs. Time for a near circular

orbit, with a period of approximately 24 hours
and an inclination of about 45°, with a random
noise of standard deviation of 107 ft.

37



X107

-Ixl07

Y
1x107]

I
w1 TV Y [l

Z
IXI10]

W T {'

~3
0 TIME IN SECONDS 10

RESIDUALS IN FEET

Fig. 4 Orbital Residuals vs. Time after processing data
that is corrupted by noise of 107 ft standard
deviation and 25 wild data points. It shows that
the Heliodyne Method can be used as an editing
procedure.
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